
unidata TWP modbus implementation in neon 08 2018

www.unidata.com.au	 p1

TECHNICAL WHITE PAPER

MODBUS
IMPLEMENTATION IN NEON

Modbus is a serial communications protocol originally published by Modicon (now Schneider Electric) in 1979 for
use with its programmable logic controllers (PLCs). Modbus has grown to a widely adopted de facto standard in the
Industrial Measurement sector and is now the most common protocol for industrial measurement applications.

It is implemented in the NRT as a partial implementation of the full Modbus protocol.

The Unidata approach to this partial implementation is to provide only two NRT functions

1.	 Function 1 is to extract (get) data from specified registers within a Modbus RTU.

2.	 Function 2 is to place data (put) into a specified register within a Modbus RTU.

The specific register information and its corresponding encoding and decoding information required for interpretation is defined when the
NRT logging scheme is created.

There are three ways that this register information can be set up using the NRT logger support software, Starlog V4:

1.	 Generic Modbus Instrument scheme, typically for 25 Modbus Channels. The register entries appear as logger Registers on the Neon
Server. New values type into the Neon Server Logger Register fields are transmitted to the logger when it next communicates with the
Neon Server. Modbus Read and Writes are both supported.

2.	 Large Modbus Builder schemes, typically for 250 Modbus Channels. Modbus writes are not supported at this time but the arbitrary number
(hundreds) of Modbus data channels is supported.

3.	 Modbus TCP Server, typically for 250 Modbus Channels. The Neon Server provides a Modbus TCP Server (Slave) interface that may be
written to directly. Written Register values are transmitted to the logger when it next communicates with the Neon Server. Modbus Read
and Writes are both supported.

NRT MODBUS IMPLEMENTATION
The NRT Modbus implementation follows the recommendations of the Modbus-IDA specifications (www.modbus.org) for the Basic
Implementation of a Modbus Master.

SPECIFICATION AND IMPLEMENTATION GUIDE V1.02 20/12/ 2006 CHAPTER 5

Modbus Master - Basic Implementation

RTU Transmission Mode

Baud rate: 1200, 2400, 4800, 9600, 19200	 (CDT adjustable)

Parity: 8,n,1; 8,e,1; 8,o,1; 8,n,2	 (CDT adjustable)

No Line Termination provided

No Line Polarisation/Biasing required (or provided)

The NRT Basic Modbus implementation will Read Coils, Discrete Inputs and Registers (Functions 01, 02, 03, 04) and Write Coils and Registers
(Function codes 05/15, 06/16)

Request Timeout:	 250 ms	 (CDT adjustable)

Failed Request – number of retries:	 3	 (CDT adjustable)

Frame turnaround delay:	 3.5 chars	 (fixed in driver code)

Buffer size:	 20 bytes	 (fixed in Modbus code)

RS-485	 3V	 (meets specs, could be 5V)

Continued over page ❱

unidata TWP modbus implementation in neon 08 2018

p2	 www.unidata.com.au

TECHNICAL WHITE PAPER

USING THE GENERIC MODBUS INSTRUMENT IN STARLOG V4
RTU Address = Address number of the RTU on the BUS (1..247) Note: Addr = 0 is the broadcast address and is supported by the NRT.

Various sampling interval methods are available:

Log Interval	 Modbus registers are read at the scheme log interval

Fixed Interval	Modbus registers are read every “n” seconds

Continuous	 Modbus registers are read at the scheme Scan interval

Manual	 Modbus register reads are triggered by scheme Events

Refresh Rate (Fixed Interval only) is number of seconds before the next Scheme Log Interval.

Continued ❱

Initial Generic Modbus wizard screen

This defines the number of seconds between each Modbus
interrogation, so that the RTU readings can be collected and placed
into the Logger Channels.

WARNING: The Refresh Rate must be modulo scan rate. i.e. if the
scan rate is 5 secs then the Refresh Rate must be in units of 5 secs,
otherwise NRT MODBUS will not activate.

New Modbus registers are added to the scheme using the “Add”
button.

Scheme memory limits the number of registers to a total of 70 bytes,
providing 35 registers if integers are used or around 15 registers if
they are floats, or a mixture of the two.

USING THE MODBUS BUILDER
INSTRUMENT IN STARLOG V4
This option does not allow for Writes, however it allows for
interrogation of an arbitrary number of (hundreds of) Modbus
registers by a Starlog V4 scheme.

The Modbus Builder Instrument uses a wizard to configure the
instrument.

A CSV, Comma Separated Variable, text file lists and configures
each Modbus register in the scheme. Each line of the CSV file
configures and individual Modbus register using the following
fields:

DESCRIPTION, TAG NAME, MODBUS ADDRESS, TYPE, ENG UNITS,
READ / WRITE

The meaning of each parameter is as follows.

Description	 A textual description of the Modbus register’s
function

TAG	 The exported Modbus register TAG as it
appears on the Neon Servers

Modbus Address	 Address number of the RTU on the BUS (1..247)

Type	 Modbus register type. One of {REAL, INT or
BOOL}

Eng Units	 The register’s Engineering Units. E.g. kPa, deg
C, Volts, etc

Read/Write	 Modbus writes are currently not supported by
this instrument

unidata TWP modbus implementation in neon 08 2018

www.unidata.com.au	 p3

Continued over page ❱

The second wizard screen specifies the Modbus data conversion method to be applied to the received data and the Modbus address
mappings for each Modbus function.

The third wizard screen summarises the results of processing the input CSV file. Blank lines and comment lines generate errors that may be
ignored.

The fourth wizard screen allows for the inclusion of standard scheme data channels into the Modbus Builder scheme. Ticking each
instrument allows those data channels to be logged by the scheme.

The fifth wizard screen lists the Modbus registers that have been included into the scheme. This screen is where the Modbus poll rate (Read
Rate) and Modbus address are specified.

Pressing the Finish button causes Starlog V4 to generate the Modbus data channels for use with the scheme.

Second wizard screen Third wizard screen

Fourth wizard screen Fifth wizard screen

AVAILABLE FROM: Unidata Pty Ltd | 40 Ladner Street, O’Connor, 6163 Western Australia | Tel: +61 8 9331 8600 | info@unidata.com.au

unidata TWP modbus implementation in neon 08 2018

p4	 www.unidata.com.au

TECHNICAL WHITE PAPER

Unidata Pty Ltd (Unidata) owns the copyright in this information and much of the information in it is Unidata’s proprietary information. No person may reproduce or otherwise deal
with this information (or any part of it) or any of the proprietary information (or any part of it) for commercial purposes except with Unidata’s prior written consent.

USING THE MODBUS TCP SERVER INTERFACE
The Neon Server provides a Modbus TCP Server (Slave) interface
that may be written to directly by a Modbus Master. E.g. DeltaV.

A standard Generic Modbus Instrument scheme must be operating
on the NRT. The logger’s Node Type must be set as “Modbus Server”
on the Neon Server.

The Neon Server uses the list of data channels in the logger’s
scheme to pass Modbus register information to the Modbus TCP
Server interface.

When polled by a Modbus Master, the Modbus TCP Server interface
immediately returns the last value received from the NRT in the
data channel. Data channel values are updated as and when the
NRT communicates with the Neon Server according to the NRT’s
Communications Frequency.

Modbus Register values written to the Modbus TCP Server interface
are transmitted as custom commands to the logger when it next
communicates with the Neon Server according to the NRT’s
Communications Frequency.

Scheme memory limits the number of registers to a total of 70 bytes,
providing 35 registers if integers are used or around 15 registers if
they are floats, or a mixture of the two.

